MySQL config options / performance

Config Options

Check an option:

  • SHOW GLOBAL VARIABLES LIKE 'innodb_buffer_pool_size';



Default: 128MB, adjusted dynamically starting with mariadb 10.2.2?

  • Up to 80% of available RAM with dedicated MySQL Server
  • Calculate with 60% margin:
    • SELECT CEILING(Total_InnoDB_Bytes*1.6/POWER(1024,3)) RIBPS FROM (SELECT SUM(data_length+index_length) Total_InnoDB_Bytes FROM information_schema.tables WHERE engine='InnoDB') A;
    • => e.g. 4 GB


Default: 48MB < mariadb 10.4
Max with 10.4: 512GB

Recommended: 0.25 - 0.5 the size of innodb_buffer_pool_size e.g. 500M


Recommended: 64MB


1 The default, the log buffer is written to the InnoDB redo log file and a flush to disk performed after each transaction. This is required for full ACID compliance.
0 Nothing is done on commit; rather the log buffer is written and flushed to the InnoDB redo log once a second. This gives better performance, but a server crash can erase the last second of transactions.
2 The log buffer is written to the InnoDB redo log after each commit, but flushing takes place once a second. Performance is slightly better, but a OS or power outage can cause the last second's transactions to be lost.

Recommended with battery: 2

With non-critical data like monitoring: 0


Reduce flush/write frequency

Default: 1

Lower performance hit for non-critical data: 5


Default: 200 or 1000?

Recommended: 4000? Low value for old HDDs like 100?

To determine the appropriate setting for you, we recommend benchmarking your storage. By default  innodb_io_capacity is set to 1000, but it should be set to approximately the maximum number of IOPS the underlying storage can handle.


If set to 1, the default, to improve fault tolerance InnoDB first stores data to a doublewrite buffer before writing it to data file. Disabling will provide a marginal peformance improvement.

innodb_doublewrite = 0




ullright uses "modern" InnoDB tables with transactions, foreign keys etc.


  • vi /etc/fstab
    • add noatime,data=writeback  (no data-writeback on virtual machines!)

Examing slow queries



Join types from good to bad:

  • eq_ref
  • ref

key: the used key(s)

rows: the number of rows scanned. the lower - the better!

Show Index

  • SHOW INDEX FROM tablename;





sounds good:

speed up table creation:


tune mysql




skip-sync-frm   = OFF
#innodb_flush_method = fdatasync

# The number of open tables for all threads. Increasing this value
# increases the number of file descriptors that mysqld requires.
# Therefore you have to make sure to set the amount of open files
# allowed to at least 4096 in the variable "open-files-limit" in
# section [mysqld_safe]
table_open_cache = 2048

# The size of the cache to hold the SQL statements for the binary log
# during a transaction. If you often use big, multi-statement
# transactions you can increase this value to get more performance. All
# statements from transactions are buffered in the binary log cache and
# are being written to the binary log at once after the COMMIT.  If the
# transaction is larger than this value, temporary file on disk is used
# instead.  This buffer is allocated per connection on first update
# statement in transaction
binlog_cache_size = 1M

# Maximum allowed size for a single HEAP (in memory) table. This option
# is a protection against the accidential creation of a very large HEAP
# table which could otherwise use up all memory resources.
max_heap_table_size = 64M

# Size of the buffer used for doing full table scans.
# Allocated per thread, if a full scan is needed.
read_buffer_size = 2M

# When reading rows in sorted order after a sort, the rows are read
# through this buffer to avoid disk seeks. You can improve ORDER BY
# performance a lot, if set this to a high value.
# Allocated per thread, when needed.
read_rnd_buffer_size = 16M

# Sort buffer is used to perform sorts for some ORDER BY and GROUP BY
# queries. If sorted data does not fit into the sort buffer, a disk
# based merge sort is used instead - See the "Sort_merge_passes"
# status variable. Allocated per thread if sort is needed.
sort_buffer_size = 8M

# This buffer is used for the optimization of full JOINs (JOINs without
# indexes). Such JOINs are very bad for performance in most cases
# anyway, but setting this variable to a large value reduces the
# performance impact. See the "Select_full_join" status variable for a
# count of full JOINs. Allocated per thread if full join is found
join_buffer_size = 8M

# How many threads we should keep in a cache for reuse. When a client
# disconnects, the client's threads are put in the cache if there aren't
# more than thread_cache_size threads from before.  This greatly reduces
# the amount of thread creations needed if you have a lot of new
# connections. (Normally this doesn't give a notable performance
# improvement if you have a good thread implementation.)
thread_cache_size = 8

# This permits the application to give the threads system a hint for the
# desired number of threads that should be run at the same time.  This
# value only makes sense on systems that support the thread_concurrency()
# function call (Sun Solaris, for example).
# You should try [number of CPUs]*(2..4) for thread_concurrency
thread_concurrency = 8

# Query cache is used to cache SELECT results and later return them
# without actual executing the same query once again. Having the query
# cache enabled may result in significant speed improvements, if your
# have a lot of identical queries and rarely changing tables. See the
# "Qcache_lowmem_prunes" status variable to check if the current value
# is high enough for your load.
# Note: In case your tables change very often or if your queries are
# textually different every time, the query cache may result in a
# slowdown instead of a performance improvement.
query_cache_size = 64M

# Only cache result sets that are smaller than this limit. This is to
# protect the query cache of a very large result set overwriting all
# other query results.
query_cache_limit = 2M

# Minimum word length to be indexed by the full text search index.
# You might wish to decrease it if you need to search for shorter words.
# Note that you need to rebuild your FULLTEXT index, after you have
# modified this value.
ft_min_word_len = 4

# Maximum size for internal (in-memory) temporary tables. If a table
# grows larger than this value, it is automatically converted to disk
# based table This limitation is for a single table. There can be many
# of them.
tmp_table_size = 64M

# Additional memory pool that is used by InnoDB to store metadata
# information.  If InnoDB requires more memory for this purpose it will
# start to allocate it from the OS.  As this is fast enough on most
# recent operating systems, you normally do not need to change this
# value. SHOW INNODB STATUS will display the current amount used.
innodb_additional_mem_pool_size = 16M

# InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and
# row data. The bigger you set this the less disk I/O is needed to
# access data in tables. On a dedicated database server you may set this
# parameter up to 80% of the machine physical memory size. Do not set it
# too large, though, because competition of the physical memory may
# cause paging in the operating system.  Note that on 32bit systems you
# might be limited to 2-3.5G of user level memory per process, so do not
# set it too high.
innodb_buffer_pool_size = 750M

# Number of threads allowed inside the InnoDB kernel. The optimal value
# depends highly on the application, hardware as well as the OS
# scheduler properties. A too high value may lead to thread thrashing.
innodb_thread_concurrency = 16

# The size of the buffer InnoDB uses for buffering log data. As soon as
# it is full, InnoDB will have to flush it to disk. As it is flushed
# once per second anyway, it does not make sense to have it very large
# (even with long transactions).
innodb_log_buffer_size = 8M